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The Kelvin wave is the lowest eigenmode of Laplace’s tidal equation and is widely
observed in both the ocean and the atmosphere. In this work, we neglect mean currents
and instead include the full effects of the Earth’s sphericity and the wave dispersion
it induces. Through a mix of perturbation theory and numerical computations using
a Fourier/Newton iteration/continuation method, we show that for sufficiently small
amplitude, there are Kelvin travelling waves (cnoidal waves). As the amplitude
increases, the branch of travelling waves terminates in a so-called corner wave
with a discontinuous first derivative. All waves larger than the corner wave evolve to
fronts and break. The singularity is a point singularity in which only the longitudinal
derivative is discontinuous. As we solve the nonlinear shallow water equations on the
sphere, with increasing ε (‘Lamb’s parameter’), dispersion weakens, the amplitude of
the corner wave decreases rapidly, and the longitudinal profile of the corner wave
narrows dramatically.

1. Introduction
The free oscillations of a layer of homogeneous fluid and uniform depth on a

rotating, spherical Earth are governed by a trio of nonlinear partial differential
equations, the ‘Laplace tidal equations’, also known as the ‘nonlinear shallow
water wave equations’. When linearized about a state of rest, these equations have
eigenmodes which are commonly called ‘Hough’ functions. The slowest eastward-
travelling wave has been given the special name of the ‘Kelvin wave.’

The Kelvin wave has enormous practical importance (Chapman & Lindzen 1970;
Andrews et al. 1987; Majda 2003). A Kelvin wave is the main oceanic component
of the coupled ocean/atmosphere oscillation known as ENSO (El Niño–Southern
Oscillation) which combines torrential rains in California with the drought known
as the ‘Great Dry’ in Australia. Kelvin waves are important in the troposphere and
the middle atmosphere; they are the primary drivers of the quasi-biennial oscillation
(QBO) in the tropical lower stratosphere and the semi-annual oscillation in the
tropical upper stratosphere and are also important in Martian atmospheric dynamics
(Zurek 1976). Because the Kelvin wave is the lowest mode of the atmosphere, it is
the most strongly excited wave from any sort of broadband forcing.

Longuet-Higgins (1968) carried out a long study of the linearized eigenmodes of the
shallow water equations on the sphere, known as Hough functions, nearly 40 years
ago. The Kelvin mode is the lowest latitudinal Hough function for each longitudinal
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wavenumber s. The nonlinear self-interaction of Kelvin waves has been studied by
Boyd (1980, 1984, 1991, 1998), Ripa (1982, 1985), Greatbatch (1985), Marshall &
Boyd (1987), Long & Chang (1990), Majda et al. (1999), Milewski & Tabak (1999)
Fedorov & Melville (2000), Chen & Boyd (2002), and Le Sommer et al. (2004). In
spite of this work, there are still significant gaps in both linear and nonlinear theories.
Some of the linear lacunae have recently been filled by Boyd (2005d ) and Boyd &
Zhou (2008).

The nonlinear shallow water wave equations also describe the baroclinic mode of
a two-layer model in the limit that the lower layer depth is infinite, in which case
motion is confined to the upper layer, a so-called one-and-a-half-layer model (Gill
1982). (This is a decent first approximation of the ocean, especially in the tropics.)
The only modification is that the actual mean depth is replaced by the ‘equivalent
depth’, which is the product of the mean depth with the fractional density difference
between the two layers (Pedlosky 1987). As explained in Marshall & Boyd (1987) and
other references cited there, the shallow water equations also model the baroclinic
modes of a continuously stratified fluid as first observed by G. I. Taylor more than
70 years ago; the main effect of continuous stratification is to slightly weaken the
nonlinearity because of coupling between different vertical modes.

In this paper, we extend the nonlinear shallow water equation theory in a couple of
ways. First, instead of using the equatorial beta-plane, which corresponds to the limit
of a very thin ocean, we explicitly include the effects of the Earth’s sphericity and
finite depth (i.e. finite ‘Lamb’s parameter’). In the equatorial beta-plane approximation,
travelling waves can be modelled by applying the method of multiple scales to derive
the Korteweg–deVries (KdV) equation (with mean currents) or the inviscid Burgers
equation (neglecting mean currents) and then invoking the known analytic travelling
waves of these models. On the sphere, it is impossible to derive a KdV model. However,
a mixture of perturbation theory (for small amplitude) and a continuation/Fourier–
Galerkin/Newton iteration algorithm (for larger amplitude) allows us to describe the
nonlinear Kelvin wave on the sphere.

The nonlinear Kelvin wave exhibits, with increasing amplitude, the so-called
cnoidal/corner/breaking (CCB) scenario. That is, for small amplitude, nonlinear
Kelvin waves are steadily travelling periodic waves similar to the cnoidal waves of
the KdV equation. The branch of solutions terminates in a wave of finite amplitude
which is a ‘corner wave’ in the sense that there is a slope discontinuity at the crest
(Boyd 2003, 2006). The waves whose initial amplitude is higher than that of the corner
wave rapidly steepen to an infinite slope (‘wave breaking’).

Much is known about the CCB scenario as reviewed in Grimshaw et al. (1998),
Boyd (2003, 2005a, b) and pioneering work has been done by Stokes (1847), Ostrovsky
(1978) and Shrira (1981, 1986). Near-corner waves are described through matched
asymptotic expansions in Longuet-Higgins & Fox (1996) and Boyd (2005c). Although
we shall not compute initial-value solutions here, the statement that large amplitude
Kelvin waves break is demonstrated in Boyd (2005a, 2006) and Chen & Boyd (2002).

Kelvin breaking has been discussed elsewhere (Boyd 1980, 1998; Fedorov & Melville
2000; Chen & Boyd 2002; Le Sommer, Reznik & Zeitlin 2004). Here we will attempt
to describe the travelling waves up to and including the corner wave. This poses a
severe numerical challenge because in the corner wave limit, the wave will have a
discontinuous x-derivative at the peak of the wave. The convergence rate of Fourier
coefficients of functions with a slope discontinuity is only O(K−2), where K is the
degree of the Fourier coefficients. By employing the Kepler mapping developed in
Boyd (2006), the convergence rate can be improved to O(K−4).
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ε Description Source

0.012 External mode: Venus Lindzen (1970)
6.5 External mode: Mars Zurek (1976)
12 External mode: Earth (7.5 km equivalent depth) Lindzen (1970)
2.6 Jupiter: simulate Galileo data Williams (1996)
21.5 Jupiter Williams (1996)
43.0 Jupiter Williams (1996)
260 Jupiter Williams (1996)
2600 Jupiter Williams & Wilson (1988)

87 000 Ocean: first baroclinic mode (1m equivalent depth) Moore & Philander (1977)
>100 000 Ocean: higher baroclinic modes Moore & Philander (1977)

Table 1. Lamb’s parameter.

The Kelvin wave depends on two parameters. The zonal wavenumber s is always a
positive integer. (The case of s = 0 is a non-propagating mode which is not relevant
here.)

Lamb’s parameter ε is a non-dimensional mean reciprocal depth which is explicitly

ε =
4Ω2a2

gH
, (1.1)

where Ω is the angular frequency of the Earth’s rotation in radians per second; a is
the radius of the planet; g is the gravitational constant, which is 9.8 m s−2 for Earth;
and H is the mean depth of the fluid. As explained in Chapman & Lindzen (1970),
Majda (2003) and Marshall & Boyd (1987), Laplace’s equations can be profitably
employed for continuously stratified (rather than homogeneous) fluids if the depth
H is interpreted as the ‘equivalent depth’ of a given baroclinic mode. Thus, to
describe all possible varieties of Kelvin waves in a three-dimensional stratified ocean
or atmosphere, one needs to solve Laplace’s Tidal equations for a very wide range of
ε ranging from very small (for the ‘barotropic’ or ‘nearly barotropic’ waves) to very
large (for high-order baroclinic modes) as illustrated in table 1.

When s and ε are both small, the Kelvin wave fills the entire globe from pole to
pole. When the parameter combination r ≡

√
s2 + ε is large compared to one, the

Kelvin wave is equatorially trapped, proportional to exp(−(1/2)rμ2), where μ is the
sine of latitude. When ε is large and much greater than s2, the Kelvin wave is well
approximated by the equatorial beta-plane. When s �

√
ε (and not necessarily large),

the velocity potential χ ≈ exp(isλ) P s
s (μ), where P s

s is the usual associated Legendre
function, and the frequency is σ ≈

√
s(s + 1)/

√
ε. A new asymptotic approximation

is derived in Boyd & Zhou (2008), which fills the gap between these two previously
known limits.

In the next section, we apply perturbation theory to analyse travelling waves of
small amplitude. Section 3 describes the numerical methods that will be employed. Our
perturbative and numerical analysis will explicitly treat only low zonal wavenumbers,
s = 1 and s =2. However, the methodologies are completely general. We concentrate
on ‘small’ zonal wavenumbers because, as illustrated in Boyd & Zhou (2008), Kelvin
waves of moderate and large s are ‘equatorial’ rather than ‘global’ modes and are
therefore well modelled by the equatorial beta-plane studies of previous work (Boyd
1998, 2006). The spatial strucure of the corner wave is analysed in § 4. Variations of
the phase speed and height of the corner wave are described in following section.
Comparisons with observations are then discussed followed by a summary.
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2. Nonlinear Kelvin wave on the sphere by perturbation theory
2.1. Introduction

In this section, we shall approximate the travelling wave solution of the nonlinear
Kelvin wave on the sphere by a perturbation series. First, the nonlinear shallow water
equations will be non-dimensionalized. Second, we will simplify by shifting to the
velocity variables introduced by Margules and changing the north–south coordinate.
Finally, the travelling wave solution with period 2π will be perturbatively derived by
expanding the unknowns in a double power series in the wave amplitude and in the
square root of Lamb’s parameter ε.

2.2. Nonlinear shallow water equations on the sphere

The nonlinear shallow water equations in spherical coordinates over a flat sea bottom
are

∂u′

∂t ′ +
u′

asin(θ)

∂u′

∂λ
− v′

a

∂u′

∂θ
−

(
2Ωcos(θ) +

u′cot(θ)

a

)
v′ +

g

asin(θ)

∂h′

∂λ
= 0, (2.1)

∂v′

∂t ′ +
u′

asin(θ)

∂v′

∂λ
− v′

a

∂v′

∂θ
+

(
2Ωcos(θ) +

u′cot(θ)

a

)
u′ − g

a

∂h′

∂θ
= 0, (2.2)

∂h′

∂t ′ +
u′

asin(θ)

∂h′

∂λ
− v′

a

∂h′

∂θ
+

h′

asin(θ)

(
∂u′

∂λ
− sin(θ)

∂v′

∂θ
− v′cos(θ)

)
= 0, (2.3)

where θ is colatitude; λ is longitude; t ′ is the dimensional time; u′ is the dimensional
eastward velocity; v′ is the dimensional northward velocity; h′ is the total depth of
the fluid; and a is the radius of the planet. (Note that following the usual geophysical
convention, v′ = − a Dθ/Dt , where D/Dt is the total derivative because colatitude θ

increases southward.)
It is convenient to non-dimensionalize the variables as follows:

t ′ = (1/[2Ω])
√

ε t, (2.4)

u′ = 2Ωa
û

sin(θ)
, v′ = 2Ωa

v̂

sin(θ)
, (2.5)

h = H (1 +
√

ε φ). (2.6)

Note that û and v̂ are the ‘Margules velocities’, introduced in the early 20th century
by the Austrian meteorologist Max Margules because the sin(θ) factors ensure that
these modified velocities have the same behaviour at the poles as scalar variables like
the height h.

It is common in tidal theory to rescale time by 2Ω , velocities by 2Ωa and the
deviation height field by ε. We have chosen different scales for time and φ for
convenience in applying perturbation theory as explained in the next section. We
employed the same scalings for the numerical studies to facilitate comparisons between
perturbative and numerical results.

For notational simplicity, we omit the accents on the Margules velocities below.
In the meridional direction, we change the coordinate from θ to μ via

cos(θ) = μ, sin(θ) =
√

1 − μ2,
∂

∂θ
→ −

√
1 − μ2

∂

∂μ
. (2.7)

We now specialize to travelling waves of the form u(λ− ct, μ) and similarly for the
other variables, where c is the non-dimensional phase speed. The usual dimensional
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phase speed in units of metres/second is

cdim = a
2Ω√

ε
c. (2.8)

The eigenmodes of Laplace’s tidal equations, which are the linearization of the
shallow water equations about a state of rest, are standing waves in latitude and
propagate only in the east–west direction, and this is true of the nonlinear travelling
waves as well. To explicitly collapse the number of coordinates from three (λ, μ, t) to
two, it is convenient to define a new coordinate in a frame of reference that moves
with the wave:

x ≡ λ − ct. (2.9)

Then
∂

∂t
→ −c

∂

∂x
,

∂

∂λ
→ ∂

∂x
. (2.10)

After all these steps and defining δ ≡
√

ε, the shallow water equations become,
without approximation,

(c(1 − μ2) − δu)
∂u

∂x
− δ(1 − μ2)v

∂u

∂μ
− (1 − μ2)

∂φ

∂x
+ δμ(1 − μ2)v = 0, (2.11)

(c(1−μ2)−δu)
∂v

∂x
−δ(1−μ2)v

∂v

∂μ
−(1−μ2)2

∂φ

∂μ
−δμ

{
u2 + v2 + (1 − μ2)u

}
= 0, (2.12)

(c(1 − μ2) − δu)
∂φ

∂x
− δ(1 − μ2)v

∂φ

∂μ
− (1 + δφ)

(
∂u

∂x
+ (1 − μ2)

∂v

∂μ

)
= 0. (2.13)

2.3. Travelling waves by perturbative double expansion

The travelling wave solution of (2.11)–(2.13) can be approximated by perturbation
theory. As is standard in nonlinear wave theory, we assume the wave amplitude is
small as measured by a placeholder variable A. Unfortunately, linearizing in A merely
generates Laplace’s tidal equations whose solutions, the Hough functions, cannot be
found analytically except within the limits ε → 0 and ε → ∞. We therefore perform a
double expansion on the further assumption that ε is sufficiently small. Then u,v,φ,c
can be expressed as series of A and δ, which is

√
ε:

u =

n∑
i=0

m∑
j=1

ui,j δ
iAj , v =

n∑
i=0

m∑
j=1

vi,j δ
iAj , φ =

n∑
i=0

m∑
j=1

φi,j δ
iAj , c =

n∑
i=0

m∑
j=0

ci,j δ
iAj .

(2.14)

We substitute this expression into (2.11)–(2.13) and collect the coefficients of δiAj

from each equation. Perturbation theory requires all these coefficients should be zero.
The lowest order equations, coefficients of δ0A1, are simply the ε = 0 limit of Laplace’s
(linear) tidal equations:

c0,0u0,1,x − φ0,1,x = 0, (2.15)

c0,0v0,1,x − (1 − μ2)φ0,1,μ = 0, (2.16)

u0,1,x + (1 − μ2)v0,1,μ − c0,0(1 − μ2)φ0,1,x = 0, (2.17)

where φ0,1 and v0,1 can be quickly eliminated, and the equations can be made one
single equation of u0,1(x, μ) and c0,0. Furthermore, let u0,1(x, μ) = U (μ) cos(sx), where
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s is the zonal wave number. We get

(1 − μ2)
∂2U (μ)

∂μ2
− 2μ

∂U (μ)

∂μ
+

(
c2
0,0 s2 − s2

1 − μ2

)
U (μ) = 0. (2.18)

This is Legendre’s equation. Since c0,0 is unknown, it is an eigenvalue problem. The
solutions bounded on the sphere are

U (μ) = P s
l (μ), l = s, s + 1, s + 2, . . . , c0,0 =

√
l(l + 1)

s
. (2.19)

Note that (2.18) also has a negative root for c0,0, since the eigenvalue is the ‘square’ of
the phase speed; however, the reduction from three equations to one requires dividing
by a factor that is ‘zero’ for c0,0 = −

√
s(s + 1)/s. Thus, the ‘anti-Kelvin’ wave, as this

spurious mode has been dubbed, is not a true eigenfunction of the original system
of three linearized equations; the only true l = s eigenmode has a positive (eastward)
phase speed.

When l = s, the solution is the well-known linear Kelvin wave on the sphere:

c0,0 =

√
s(s + 1)

s
, (2.20)

u0,1(x, μ) = P s
s (μ) cos(sx), (2.21)

v0,1(x, μ) = (1 − μ2)
∂P s

s (μ)

∂μ

sin(sx)

s
, (2.22)

φ0,1(x, μ) = c0,0P
s
s (μ) cos(sx). (2.23)

The higher order equations almost have the same form as (2.15), (2.16) and
(2.17), except they have forcing terms from lower order solutions on the right-
hand sides of these equations. After eliminating φi,j and vi,j , there is always an
inhomogeneous Legendre equation for ui,j with the inhomogeneous part containing
ci,j−1. By employing the Fredholm solvability condition, which requires the inner
product of the eigenfuction and the inhomogeneous term be zero, we can get the
eigenvalue ci,j−1 and then get the particular solution for ui,j . The homogenous
solutions can always be absorbed into the lowest order solution because they have
the same form as the lowest order solutions. A is a placeholder used to order the
variables.

For the s = 1 case (i.e. a longitudinal period of 2π), the nonlinear Kelvin wave on
the sphere is, to the lowest nonlinear order,

c =
√

2 − 1

4
δ +

17
√

2

320
δ2 − 1

160
δ3 +

61
√

2

40
δ2A2 − 83

40
δ3A2, (2.24)

u =
√

1 − μ2 cos(x)A −
√

2

2
(1 + μ2)

√
1 − μ2 cos(x)δA

+
27

40
(1 + μ2)

√
1 − μ2 cos(x)δ2A + 2

√
2(1 − μ2) cos(2x)δA2, (2.25)

v = −μ
√

1 − μ2 sin(x)A + μ
√

2(1 − μ2) sin(x)δA

+
μ

20

√
1 − μ2(2μ2 − 29) sin(x)δ2A − 2

√
2μ(1 − μ2) sin(2x)δA2, (2.26)
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φ =
√

2(1 − μ2) cos(x)A − 5

4

√
1 − μ2 cos(x)δA

−
√

2

320
(64μ2 − 273)

√
1 − μ2 cos(x)δ2A +

(
15

4
(1 − μ2) cos(2x) − μ2

4

)
δA2. (2.27)

The extension to s > 1 is straightforward.

3. Kepler mapping/Galerkin method/Newton continuation method
In this section, we shall calculate the same travelling wave solution derived in

the previous section but without the restriction to small wave amplitude and small
Lamb’s parameter. We shall combine a change of coordinate (Kepler mapping) with
a spectral Galerkin method and Newton continuation.

3.1. Kepler mapping

To improve the Fourier rate of convergence from second order to fourth order in
the degree of the coefficients, we transform the longitudinal coordinate from x to
a new stretched coordinate z. The ‘Kepler mapping’, so named because inverting
the transformation requires solving the Kepler equation of celestial mechanics,
concentrates high resolution near the discontinuous corner at x = 0 while preserving
the periodic behaviour in longitude (Boyd 2006). This creates a mild complication
because we apply the numerical method to waves of different longitudinal periods
2π/s, where s is the zonal wavenumber of the lowest nonzero longitudinal Fourier
component. The form of Kepler mapping has a slightly different form for different s:

x = z − sin(sz)

s
, (3.1)

∂

∂x
→ 1

1 − cos(sz)

∂

∂z
. (3.2)

The mapping preserves spatial periodicity, and x = z at z = nπ/s, n= 0, ±1, ±2, . . . .

3.2. Galerkin method

The Galerkin method for discretizing a differential equation demands that when
the truncated Fourier series for each unknown is substituted into the shallow water
equations to obtain the so-called residual function, the leading terms of the Fourier
series of the residual be zero. These constraints are obtained by evaluating the integral
inner product of the basis functions with the residual function and demanding that
this integral be zero or, equivalently, that each basis function be orthogonal to the
residual function. The number of orthogonality conditions is equal to the number
of undetermined coefficients in the Fourier series for the unknowns, thus deriving a
consistent set of nonlinear algebraic equations for the Fourier coefficients of u, v and
φ. A full discussion is given in Boyd (2001).

To reduce the number of unknowns by a factor of four, we assume that u and φ are
symmetric about the equator, and v is antisymmetric about the equator, with z =0
in both cases. (Our success in computing solutions with the assumed symmetries is
an a posteriori justification for these assumptions.) The domain of the entire globe
is [0, 2π] in longitude and [0, π] in colatitude. But by employing the periodicity and
parities of the Kelvin wave, we can reduce the domain by a factor of 2s in longitude
and half it in latitude. So we only need to calculate the unknowns in the region of
[0, π/s] in x or z and [0, π/2] in θ .

As explained in Boyd (1984), the nonlinear travelling wave eigenproblem has a
unique solution only after specification of the longitudinally averaged zonal flow, in
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this case, zero. By integrating geostrophic balance around a circle of latitude, one finds
that a zero mean for u at each latitude implies that φgeostrophic must have a zero mean
and vice versa. Integrating the ‘full’ latitudinal momentum equation around a circle
of latitude gives g ∂h/∂θ = u∂v/∂λ/ sin(θ) − (1/2)∂v2/∂θ + cot(θ)u2, with an overline
denoting the zonal mean. As usual, however, such a cyclostrophically balanced flow
is negligible Boyd (1976); in our computations, the mean height field h was always
less than one part in 10 000 relative to the maximum of the wave.

Also by employing the parities of the unknowns, we can halve the number of basis
functions used in both directions. In z, the basis functions of u and φ are

ψ
(z)
sym,0 = 1, ψ

(z)
sym,1 = cos(sz) + 1

2
, (3.3)

ψ (z)
sym,m = cos(smz), m = 2, 3, . . . , M, (3.4)

where the constant ψ
(z)
sym,0 is used only for φ, and the basis functions of v are

ψ (z)
asym,m = sin(smz), m = 1, 2, . . . , M. (3.5)

The additive factor of (1/2) in ψ
(z)
sym,1 ensures that all basis functions with m > 0

‘individually’ have a zero longitudinal mean, despite the change of coordinate from
longitude to the Kepler coordinate s, so that the Kelvin wave is not accompanied by
a zonal mean flow; note that

∫ π

0
cos(sz(x))dx = − π/2 (Boyd 2006).

In colatitude, the basis functions of u and φ are

ψ (θ)
sym,n = cos((2n − 2)θ) sin(θ)s , n = 1, 2, . . . , N, (3.6)

and the basis functions of v are

ψ (θ)
asym,n = cos((2n − 1)θ) sin(θ)s , n = 1, 2, . . . , N. (3.7)

The reason for the sins factor is explained in Orszag (1974), Boyd (1978a, 2001
Chapter 18, § 8); it suffices to say that the rate of convergence is greatly improved in
spherical geometry by multiplying the cosines by sin(θ)s .

Finally, we expand u, φ and v as

u =

M∑
m=1

N∑
n=1

au
mnψ

(z)
sym,m ψ (θ)

sym,n, (3.8)

φ =

M∑
m=0

N∑
n=1

aφ
mnψ

(z)
sym,mψ (θ)

sym,n, (3.9)

v =

M∑
m=1

N∑
n=1

av
mnψ

(z)
asym,mψ (θ)

asym,n, (3.10)

where au
mn, aφ

mn and aφ
mn are the coefficients u, φ and v, whose sizes are M × N ,

M × (N + 1) and M × N .
The number of points used in z should be no fewer than the number of basis

function used in z. So it requires Mpts � M . Similarly, Npts � N .
To apply the Galerkin method, we first substitute the (truncated) Fourier series into

the nonlinear shallow water equations. The resulting ‘residual functions’ are just the
left-hand sides (LHSs) of (2.11)–(2.13). The residual functions depend on the spectral
coefficients {au

mn, a
v
mn, a

φ
mn} and the phase speed c. We then demand that the residual

be orthogonal to a set of test functions when integrated over the domain. In ‘mean
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weighted residual’ methods, the test functions can be very general; Galerkin’s method
is the special case in which the test functions are the basis functions. Thus, for (2.11)
and (2.13), the test functions are ψ (z)

asym in z and ψ (θ)
sym in θ . For (2.12) the test functions

are ψ (z)
sym in z, ψ (θ)

asym in θ .
The Galerkin residual is

r1,mn =

∫ ∫
LHS(2.11) × ψ (z)

sym,m(θ) × ψ (z)
asym,n(z) dz dθ, (3.11)

r2,mn =

∫ ∫
LHS(2.12) × ψ (θ)

asym,m(θ) × ψ (z)
sym,n(z) dz dθ, (3.12)

r3,mn =

∫ ∫
LHS(2.13) × ψ (θ)

sym,m(θ) × ψ (z)
asym,n(z) dz dθ, (3.13)

where m =1, . . . , M, n=1, . . . , N . The sizes of r1, r2 and r3 are M × N , M × (N + 1)
and M × N , so there are in total 3MN + M residual elements.

The integrals are numerically approximated using Mpts quadrature points in z:

z =
(2i − 1)

2Mpts

π

s
, i = 1, 2, . . . , Mpts; (3.14)

so z ∈ (0, π/s), which is also the range of the unmapped coordinate x. We use Npts

points in colatitude:

θ =
(2j − 1)

4 Npts

π, j = 1, 2, . . . , Npts . (3.15)

Because the integrands are periodic in both z and θ , the trapezoidal rule converges
exponentially fast in Mpts and Npts except for the corner wave. Because of parity
symmetry, the range of the quadrature points may be halved, just like the number of
basis functions, in each coordinate.

3.3. Newton continuation method

The 3MN + M + 1 unknowns are the scalar c plus three vectors of lengths MN ,
M(N + 1) and MN : au, aφ and av . However, there are only 3MN + M values of r1,
r2 and r3. So in addition, we require that the value of φ at x = 0 and latitude= 0, or
φ00 for short, is fixed during the iteration. This gives us an additional residual r4.

We can reshape the coefficient matrices au, aφ and av to three vectors, stacking
these and c together to form a (3MN + M + 1) × 1 vector a(3MN+M+1)×1. Similarly, we
can form a vector r (3MN+M+1)×1 from r1, r2 and r3 and r4.

The algebraic system r (a) = 0 is solved by a Newton/continuation method. The
Newton iteration is to iterate the following until the difference between successive
iterates is below a (tiny) user-chosen error tolerance:

a(n+1) = a(n) − J−1
(
r (n)

)
, (3.16)

where J is the Jacobian matrix

Jij =
∂ri

∂aj

, i = 1, . . . , 3MN + M + 1, j = 1, . . . , 3MN + M + 1, (3.17)

and n is the iterative number. Unfortunately, all iterative methods require a ‘first
guess’ or ‘initialization’.

Parameter continuation provides the required first guess. To trace a complete branch
of solutions, we march from small amplitude (where the initialization is provided by
perturbation theory as in the previous section) to large amplitude while keeping all
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ε 0.01 0.1 0.5 1 3 5 15 30

s =1 0.0007 0.002 0.0005 0.0008 0.007 0.001 0.004 0.009
s =2 0.001 0.002 0.008 0.009 0.004 0.003 0.003 0.007

Table 2. Relative coarse–fine differences in the L∞ norm.

other parameters fixed. We chose φ00, which is the equatorial height at the crest
of the wave, φ(x = 0, θ = π/2), as the amplitude parameter (though other choices
are possible). The continuation strategy is to march in small steps of the amplitude
parameter. The computed solution for the kth value of φ00 is used as the initialization
for Newton’s iteration to compute the Fourier coefficients a for the (k + 1)st value
of φ00.

As the amplitude of Kelvin wave increases, it evolves to the corner wave, so called
because it has a slope discontinuity at the crest (Boyd 2005a). The branch of travelling
waves ends abruptly at the corner wave: there are no solutions for larger amplitude.
(Instead, all waves larger than the corner wave break.) The corner wave is a sort of
an anti-bifurcation point in the sense that no additional branches are born at the
corner wave, but rather the branch simply dies. So when the amplitude is a little
greater than that of the corner wave, Newton’s iteration fails.

3.4. Resolution check

Two different resolutions were used as a self-consistency check. The coarse solutions
used M = 20 basis functions in longitude, N = 10 in latitude with Mpts =30 (longitude)
and Npts =15 (latitude). All high resolution computations were set at M = 30, N = 15,
Mpts = 40 and Npts = 20. The difference between these two results for the corner waves
are given in table 2, which catalogues the L∞ norm of the difference between the
coarse and fine grid approximations, divided by φ00, for various ε and s. We see that
coarse resolution gives very decent results: all the coarse–fine relative differences are
less than 0.9 %.

4. Spatial structure of the corner wave
We computed steadily propagating Kelvin waves of s =1 (longitudinal period of

2π) and s = 2 (longitudinal period π) for various values of Lamb’s parameter ε, using
the numerical methods described in the previous section.

Figure 1 shows the normalized absolute values of Fourier coefficients of φ in the
corner wave limit. The rate of convergence is about O(K−4), where K =

√
m2 + n2

is the total degree of the Fourier basis function indexed by m and n. When the
amplitude is less than its corner wave limit, the rate of convergence is exponential.
At the corner wave limit, the rate slows to O(K−4).

It would be helpful if the solution of the discretized partial differential system
terminated at the corner wave, but this is not true. The algebraic system has a
solution even ‘beyond’ the corner wave limit because the branching of the solution
in a ‘finite’ dimensional system of polynomial equations cannot simply stop. Instead,
when φ00 is beyond the corner wave limit, the Fourier coefficients cease to converge, so
that the finite-dimensional Galerkin-discretized polynomial system no longer yields a
good approximation of the solution of the differential equation, which is a system of
infinite dimension. The subtleties of identifying the corner wave are discussed in detail
in Boyd (2006). However, we will discuss graphical clues to spurious solutions next.
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Figure 1. Normalized absolute values of Fourier coefficients of φ, which is the solution of
the corner wave of s = 1 and ε = 1 case; m and n are coefficient degree in longitudinal and
latitudinal directions respectively. The solid line has a slope proportional to K−4, confirming
the predicted fourth-order rate of convergence when the Kepler change-of-coordinate is used.
The rate of convergence is good enough to show that the solution of the corner wave is
reliable.
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Figure 2. Travelling Kelvin wave solutions with s = 1 and ε = 1. (a) Equatorial section
of φ for φ00 = 0.1705, 0.1755, 0.1805, 0.1855 and 0.1905, respectively; φ(x, θ = π/2) steepens
with the increasing φ00. When φ00 = 0.1905, φ(x, π/2) is the corner wave, discontinuous
in its first derivative at the crest. (b) A zoom in plot of φ(x, π/2) with φ00 = 0.1755,
0.1805, 0.1855, 0.1905, 0.1955, 0.2005. The heavy curve is for φ00 = 0.1905. Note that this graph
includes two values of φ00 larger than that of the corner wave (dashed); these are unphysical
as indicated by their unphysical oscillations near x = 0. The interval in longitude is from 0 to
0.1, which is about 1.6% of the total width. (Note that the plot is in the physical longitudinal
coordinate x; the circles on each curve show the points of the grid, which is evenly spaced in
z but very heavily concentrated in x near x = 0.) This graph shows that the corner wave is
easily distinguished by the eye from near-corner waves in a zoom plot.

Figure 2 shows travelling Kelvin wave at the equator for s = 1 and ε = 1 of different
amplitudes φ00. Figure 2(b) is a zoom plot of the same five solutions illustrated in
figure 2(a). All five solutions are very close to the corner wave and seem to rise to
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Figure 3. For s = 1 and ε = 1, φ of the corner wave; (a) and (b) differ only in viewing angle.
The peak value of φ00 is 0.1905. The comparison shows that only the longitudinal derivative
is discontinuous at the peak.

a corner at x = 0 in figure 2(a). Graphical magnification by plotting the variable on
a small x-interval shows that the slope discontinuities are only optical illusions for
four of the five: the lower four solid curves have narrow regions of high curvature
very close to the origin at which these waves flatten out to zero slope at x = 0. In
contrast, when φ00 = 0.1905, the corner wave is almost linear all the way to x =0.
Thus, the corner wave is easily distinguished by the eye from near-corner waves with
a zoom plot (Boyd 2003). The two dashed curves are physically spurious solutions
whose amplitudes are larger than that of the corner wave; these are genuine solutions
of the system of polynomial equations generated by the Galerkin discretization, but
these are not approximations of solutions of the shallow water equations.

Surface mesh plots φ for the corner wave limit are shown in figure 3. There
is a question: are both components of the gradient of φ discontinuous at the
peak – or only one? We visually answered this question by plotting φ twice from
different viewing angles. Figure 3(a) shows that the longitudinal derivative is (at least
visually) discontinuous. However, rotating the viewing angle by roughly a quarter
turn shows only a smooth, rounded crest: the north–south derivative shows no signs
of discontinuity.

Figure 4 displays line graphs that, for two different values of ε, make the same
point. In each, the solid curve is a longitudinal cross-section at the equator, while
the dashed curve shows φ(0, y). The x-derivative is discontinuous, but the latitudinal
derivative is smooth.

Just as for infinitesimal amplitude Kelvin waves, u of the corner wave is graphically
indistinguishable from φ and so is not plotted. The first derivative of the northward
velocity v is everywhere continuous; so v is not plotted.

Figure 5 compares φ(x, y = 0), normalized by dividing by φ00, for many different
values of ε. As ε increases, the corner wave becomes increasingly narrow in longitude.
This trend is also evident by comparing figure 4(a) and figure 4(b). Dispersion and
the height of the corner wave both diminish rapidly as ε increases; it is remarkable
that the corner wave becomes narrower, more focused in longitude, in this same limit.
The latitudinal width, not shown, becomes increasingly narrow as captured by the
equatorial beta-plane approximation, φ(x, θ) ∼ A(x) exp(−

√
ε(θ − π/2)2). However,

the latitudinal width is controlled by ‘linear’ dynamics, whereas the longitudinal
focusing is caused entirely by ‘nonlinearity’: when the amplitude is much smaller
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Figure 4. Profile of φ along the equator (solid) and the profile of φ at x = 0 as a function of
latitude (dashed) for the corner wave for s = 1 for two different values of Lamb’s parameter: (a)
ε = 1; (b) ε = 30. The horizontal axis does double duty, being longitude for φ(x, latitude= 0)
and latitude for φ(x = 0, latitude). In both panels, the longitudinal derivative (solid) is clearly
discontinuous at the crest, whereas the north–south derivative shows not the slightest hint of
non-smoothness.
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Figure 5. Normalized φ(x, θ = π/2) (longitudinal section at the equator) of the corner wave
solution of s = 1 and ε = 0.01, 1, 5, 30. The profiles of φ(x, θ = π/2) are scaled by their
corresponding maxima, φ00. The shape of φ at the equator becomes narrower and narrower
as ε increases.

than the corner wave, the longitudinal structure of the Kelvin mode is approximately
cos(sλ).

Another interesting question is how far the slope discontinuity extends from the
equator to the poles. To answer this question, we calculated dφ/dx. Figure 6 shows
φx at several latitudes, shown on the full longitudinal range in (a) and as a zoom plot
in (b). A finite spectral series must always impose a truncation-dependent smoothing
on a discontinuity. Even so, it is clear the slope rapidly diminishes away from the
equator. It seems likely that the Kelvin wave is discontinuous only at the equator.

The graphs for s = 2 were so similar to those for s = 1 that they have been omitted
but will appear in Zhou’s forthcoming thesis. However, the maximum equatorial
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ε 0.01 0.1 0.5 1 3 5 15 30

Phase speed c 1.4327 1.3792 1.3008 1.2551 1.1758 1.141 1.082 1.0572
φ00 3.5 0.95 0.32 0.19 0.074 0.045 0.0145 0.0071
(c2 − 1)/(3

√
ε) 3.5088 0.9510 0.3262 0.1918 0.0736 0.0450 0.0147 0.0072

h00 ≡ φ00

√
ε 0.3500 0.3004 0.2263 0.1900 0.1282 0.1006 0.0562 0.0389

Table 3. Parameters in the corner wave limit for the s = 1 case.

ε 0.01 0.1 0.5 1 3 5 15 30

Phase speed 1.2349 1.2169 1.1883 1.1698 1.1327 1.1135 1.0739 1.0537
φ00 1.75 0.5 0.192 0.12 0.053 0.036 0.0129 0.0067
(c2 − 1)/(3

√
ε) 1.7499 0.5069 0.1942 0.1228 0.0545 0.0358 0.0132 0.0067

h00 ≡ φ00

√
ε 0.1750 0.1581 0.1358 0.1200 0.0918 0.0805 0.0500 0.0367

Table 4. Parameters in the corner wave limit for the s = 2 case.
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Figure 6. The derivative of φ of the corner wave solution of the s = 1 and ε = 0.01 case with
respect to the longitude x: (a) φx at latitudes 0, π/64, π/32, π/16, π/8, π/4 plotted on the full
global domain; (b) same as (a) but a zoom plot with a much smaller range.

height φ00(ε) and phase speed c(ε) for the corner wave are discussed for both s = 1
and s = 2 in the next section.

5. Variations of phase speed and corner height
The parameters of the corner wave for different ε are summarized in table 3

(s =1) and table 4 (s =2). From the tables,we can see both φ00 and phase speed
c decrease as ε increases. This is as expected: because the dispersion due to the
Earth’s sphericity decreases rapidly with ε (as known from Longuet–Higgins’s large
ε asymptotic expansion of the linear phase speed), it is plausible that nonlinearity
will overwhelm dispersion, giving breaking instead of travelling waves, at increasingly
lower values of the wave amplitude φ00 as ε → ∞.

The tables also list the quantity

h00 ≡
√

ε φ00. (5.1)
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Figure 7. Representation of h00 of the corner waves of different ε for s =1 (upper thick curve
with diamonds) and s = 2 (lower thick curve with circles). The dashed line on this log–log plot
shows that h00 decays asymptotically proportional to 1/

√
ε as ε → ∞.

This gives the maximum perturbative height of the Kelvin corner wave relative to the
mean depth H ; that is the maximum perturbative height is h00 H in meters. We have
listed this quantity because it decreases more slowly with increase in ε than does φ00.

Figure 7 compares the equatorial height of the corner wave versus ε for both s =1
and s = 2. The results are very similar for the two wavenumbers. As ε increases, the
dispersion due to the sphericity of the Earth decays very rapidly. Consequently, the
height h00 of the corner wave diminishes very rapidly, too. On a log–log plot, a power
law asymptotes to a straight line; the dashed line here suggests that h00 ≈ 0.2/

√
ε for

both wavenumbers. The graph suggests that the maximum height of the corner wave
is independent of zonal wavenumber s in the equatorial beta-plane limit that ε → ∞.

The tables also show an interesting empirical relationship between the phase speed
and the maximum height of the corner wave:

φ00 ≈ c2 − 1

3
√

ε
. (5.2)

By matching discontinuities in the x-derivatives of u and φ, we can derive the
diagnostic relationship (c − u00

√
ε)2 = 1 + h00 at the crest of the corner wave. (We

thank a reviewer for suggesting this. Unfortunately, it is not possible to extend this
further: the rest of our study is based on perturbation series and computations).

6. Limitations of theory
Our paper is a comprehensive study of the full parameter space for flow without

mean currents, clouds or vertical propagation, aimed at illuminating the reality that
Kelvin waves sometimes break and sometimes don’t and have something or other
as a boundary between these two regimes as seen in numerical models that include
mean flow as well. We have resisted making comparisons between our results and
observations because of the limitations of our theory. Equatorially trapped Kelvin
waves are strongly affected by the strong mean currents in the tropical ocean: the
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alternating jets known as the South Equatorial Current, North Equatorial Current,
North Equatorial Counter-Current and Equatorial Undercurrent. We have shown
here that the dispersion created by the Earth’s sphericity increasingly weakens as ε

increases. For the large values of ε relevant to the tropical ocean, as catalogued in
table 1, spherical effects will be overwhelmed by the much stronger dispersion induced
by these alternating jets. A goal of future work is to therefore incorporate mean flow
into models of travelling Kelvin waves.

This is hard within the shallow water model because of critical latitude effects
(Boyd & Christidis 1982; Natarov & Boyd 2001), which are known to weakly
destabilize the Kelvin waves. The Equatorial Undercurrent, which has strong vertical
shear and (as its name implies) does not extend to the surface, can only be incorporated
into a three-space-dimensional model, a task orders of magnitude more difficult than
the two-dimensional travelling wave models considered here.

Mean flow, though not negligible in the troposphere, is relatively less important
to atmospheric Kelvin waves than the oceanic because the rather small values
of ε relevant to the atmosphere imply much stronger dispersion due to the
Earth’s sphericity. However, tropospheric Kelvin waves are both excited by cumulus
convection and simultaneously organize and transport this convection. Parameterizing
cumulus convection in general circulation models is still a major research frontier.

Another difficulty in atmospheric theory is that the air is not a vertically confined
layer like the sea but rather a semi-infinite layer with free vertical propagation.
This is a serious technical complication because as the atmospheric density decreases
with height, the amplitude of vertically propagating waves must increase. Eventually,
all inviscid, vertically propagating waves must break. The breaking of tropospheric
gravity waves is a major source of damping for larger scale motions in the middle
atmosphere. Kelvin waves are also dissipated by rather strong radiative damping in
the mesosphere. Thus, there is competition between growth (due to decreasing density)
and decay (due to damping). Water waves experience a similar energy growth when
propagating into water of decreasing depth. (Similarly, ocean equatorial Kelvin waves
propagate through variable depth because of the deepening of the main thermocline
to the west in the Pacific Ocean (Long & Chang 1990). Grimshaw (1970, 1971, 1979)
showed that the soliton slowly adjusts to the changing depth while shedding a shelf to
conserve total mass and energy. Thirty-seven years later, he and his collaborators have
progressed to a model with both a gradual slope and dissipation (El, Grimshaw &
Kamchatnov 2007); however, a two-dimensional model without Coriolis force is much
simpler than the shallow water equations on a rotating sphere, and parameterized
gravity wave breaking and radiative dissipation are more complicated than the Chezy
bottom friction of their paper.

Mean currents strongly modulate the propagation of Kelvin waves. Indeed, this is
the heart of the Lindzen–Holton theory of the QBO in the tropical lower stratosphere
(Andrews et al. 1987): Kelvin and Yanai waves in turn force the mean flow to reverse
sign, but the QBO strongly modulates the upward penetration of both wave species, so
that they switch roles with each QBO cycle. Existing theories use parameterizations
of wave breaking and other drastic simplifications; the length scales are so short
that it is only recently that general circulation models (GCMs), metaphorically the
supercomputer-hogging aircraft carriers of climate research, have been able to even
crudely capture the QBO. Kelvin waves also are a major driving force in the semi-
annual wind oscillation in the tropical upper stratosphere and are in turn controlled
by the ever-changing mean current (Boyd 1978b, c). There is thus a large gap between
the idealizations of our computations and the real ocean and atmosphere, but this is
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not uncommon in geophysical fluid dynamics (e.g. Lorenz and Krishnamurthy 1987;
Boyd 1994, 1995).

7. Summary and conclusions
The computations confirm the results of simplified models and equatorial beta-

plane computations: the travelling waves of the Kelvin mode terminate in a corner
wave of finite height. The amplitude of the corner wave diminishes very rapidly with
ε when the mean flow is neglected. In the real ocean or atmosphere, our results for
large ε are quantitatively suspect because the very weak dispersion due to spherical
geometry would likely be overwhelmed by the stronger dispersion due to the mean
zonal currents.

As ε increases, the longitudinal profile of the corner wave becomes very narrow,
whereas the corner waves for small ε span the whole equator.

In two space dimensions, slope discontinuities may take the form of a ‘cone’ (with
discontinuities in both x and y derivatives at the peak), a ‘crease’ with a ‘curve’ or
‘line’ of discontinuous slope, extending away from the equator into both hemispheres
or a ‘point’ singularity in which only one derivative is discontinuous and that too
only at a single point. All previous studies of corner waves have been limited to one
horizontal dimension and therefore furnish no guidance. Although it is impossible to
prove theorems through inexact numerical computations, our graphs strongly suggest
that the third possibility is true of the Kelvin corner wave: the height and velocity
fields are singular only at the peak and only through a discontinuity in the direction
of propagation, longitude.

Although we performed detailed computations only for zonal wavenumbers s =1
and s = 2, there was so little qualitative difference that it appears that these conclusions
are independent of zonal wavenumber s at least for small s. As illustrated in
Boyd & Zhou (2008), Kelvin waves of moderate and large s are ‘equatorially trapped.’
Therefore, short Kelvin waves are well described by the equatorial beta-plane theory
and computations in Boyd (1998, 2006).

Our computations cannot exclude the possibility that there may be nonlinear Kelvin
branches which are not continguous with small-amplitude, linear Kelvin waves. This is
not a difficulty peculiar to Kelvin waves but rather is a generic worry when computing
the roots of any system of nonlinear algebraic or transcendental equations, whether
resulting from the discretization of travelling waves or not; the peril of the ‘missed
solution branch’ is ubiquitous. However, no such additional branches have been
detected in numerous initial-value experiments: all Kelvin modes bigger than the
corresponding corner wave break.

This work was supported by the National Science Foundation through grants OCE
OCE 0451951 and ATM 0723440. We thank the four reviewers for their very detailed
comments.
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